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ABSTRACI’

Temporal and spatial power spec tra from computer simulations of

the equations modeling Type II irregularities in the equatorial elec-

trojet are presented. The power spectra are computed using the code

of Ferch and Sudan (1977), averag ing over tin~s as long as 20 seconds.

The dependence of the average frequencies and linewidths on wavelength

and angle from the electrojet drift is studied. The mean frequencies

obtained agree well with linear theory except at short wavelengths

while the linewidths are greater than those predicted by the linear

damping rates. The spatial power spectra were also computed and

found to be approximately isotropic. Favorable comparisons are made

with radar observations and the theory of Sudan and Keskinen (1977) .
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INTRODUcTION

In the equatorial U region, radar backscatter observations have

shown irre gular ities in p lasma density whose spectral width is often

comparable to the mean 1)Dppler shift and whose phase velocities are

on the order of the electron drift speed [Balsley, 1969; Balsley and

Farley, 1971, 1973; Farley and Baisley, 1973; Fejer et al., 1975,

1976]. Many of the features of these Type II irregularities have

been explained with the linear theory of the gradient dri ft  insta-

bility [Maeda et al., 1963; Knox, 1964; Reid, 1968; Rogis ter and

D’Angelo, 1970; Whitehead, 1971]. Both one-dimensional [Sato and

Tsuda , 1967; Sato, 1971, 1973; Rogister, 1972] and two-dimensional

[Sudan et al., 1973] nonlinear theories have been proposed to explain

the presence of the Type II irregularities with wavelengths that are

predic ted to be linearly damped . The two-dimensional model has found

support both from experiment [Balsley and Fan cy, 1973; Fan cy and

Balsley , 1973; Fejer et al., 1975, 1976] and simulation [Mc[k nald

et al., 1974 , 1975; Ferch and Sudan, 1977].

M.ich of our understanding of the physics of the Type II irregu-

larities is based upon VHF radar observations , particularly the

spectral measurements . However, existing radars have studied only a

few wavelengths whereas the range of scale sizes of the Type II irregu-

lanities is known to span at least two orders of magnitude . Spectra

from numerical simulations can be computed for many wavelengths and,

as a resul t, supplement experimental observation. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We have extended a previous numerical study [Fe rch and Sudan, 
—

1977] and , using the sante code , computed the temporal and sp atial

power spectra from simulations of the two-dimensional model . This

code is sufficiently f ast that moderate spectral integration times

• can be achieved. The numerically obtained temporal power spectra

favorably reproduces Type II radar spectra.

In this paper we first review the linear and nonlinear theory

of the Type II irregularities. Then we present the results of the

numerical simulations while making comparisons with experiment and

theory . Finally we summarize and discuss the principal results of

this study.

_ _ _ _ _ _ _  ~~~~~~~~-~~~~~~.-- ~--——~~~~~~~~~~~~~~~~~~~~ - - --
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LINEAR TI LEORY

For wavelengths of more than a few meters , the E region electroje t

plasma can be described as an electron and singly charged ion fluid.

The fluid equation can be simplified by making the following assump-

tions :

r 
1. The electron gyroradius is small compared to wavelengths

of interes t.

2. The wave electric field is essentially electrostatic, since

the plasma pressure is much smaller than the ambient magnetic energy

densi ty .

3. The electron and ion densities are equal (quasineutrality)

since we are interested in wavelengths much larger than the Debye

length.

4. The ions and electrons are isothermal.

S. The waves are assumed to propagate exactly perpendicular to

the magnetic field, since these waves suffer the least diffusive

damping.

6. The electron inertia is neglected, because the electron-

neutral collision and cyclotron frequencies are much larger than the

wave frequency Doppler-shifted to the electrojet drift frame.

7. Ion inertia is also neglected f or  the same reasons as in (6) .

With these res tric tions the f luid equations are :

+ V~n~~~= 0 (1) 

- . -~~~- . - . -~~-- ~~~~~~~~~~~~~~~~~~~~~ 
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~T (~~~!e 
x B )  + u~ —

~~~~

- +  Ve~~ 
= 0 (2)

Vn.
(3)

(4)

where ~ denotes electrons (e) or ions (i) and J = ne(ZV
~
-
~~

), E =  -V4
is the electric field , B is the geomagne tic field , u, is the thermal

velocity, and v is the collision frequency with neutrals. All other

symbols have their conventional meaning. We adopt a Cartesian

coordinate system in which the magnetic field is aligned wi th the

x axis (north), the y axis is wes tward , and z di rection ver tically

upward. Eliminating algebraically the velocities V0, V~, equations

(l)-(4) reduce to

+ 

~
‘a~ 

X V~~Vn = DaV
2fl (5)

x x V~•Vn + 

~~~~~~~ 
+ nV24) = D’V2n (6)

i~her~

~
e = eB/me

= ZeB/m .

_ _
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= e~I /nt (ç~ + v~)

= v .U
2
/ (c2~ + v~)

In the lower E region equatorial electroje t, the parame ters are

such that 8 (1 + ~Y’v~/cz~. 
~~ 

(1 + ~))l~e Da 2~ (l +

D’ (1 + Ipy2 (v
~
/1

~)D1, ~
Equations (5) and (6) can be linearized about the equilibrium

n0
( z )  = N

0
(l + z/L), d40/dz 

= a(z + LY
1 where a = B(V~/c2e- (l+(ve/c~e

) 2 )LVd ]

and Vd is the electron drift velocity (in the y direction) at z = 0.

Fluctuations n = 11 exp{i[k~y + k
~
z - 

~ 1~r 
+ iyk)t]} 

with k’B = 0 and

k~L >> 1 have frequency and growth ra te given by [Reg ister and

D ’Angelo , 1970]

WI(r (1 + 

~~~~2~~d 
(7)

1k = [~p(1 + 
~~~
‘
~~~~e1~

)
e) ~~II

/ k21
~
(
~ 

+ tj.i)]-k2C~/v.) (8)

where C~ = K(Te + T
~

) / m
~ 

= (me/ mi)n
~ 

+ n~ is the acoustic velocity.

Instability is possible if

Vd k 2 y k2C2

r (~ Y~) > (1 + ) e S (9)

Note that L is p ositive f or  densi ty increasing with altitude and

Vd is positive for electrons driftin
g toward the west, the usual

daytime conditions.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -.. - ~—
—
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NONLIM~AIR ‘IlUiORY

The min imum unstable wavelength for the ionospheric parameters

of the F—region from Eq. (9) is about 30 m. The radar hackscatter

observations indicate very large nonthermal density fluctuations at

3 m. These fluctuations are stable and damped according to the

linear theory of the previous section and therefore should not be

excited. In addition, vertically propaga ting irregulari ties are

observed that cannot be accounted by linear theory. The explanation

lies in the fact that the unstable oscillations with wavelengths longer

than 30 m couple nonlinearly to these short wavelengths and in the

steady state the rate of excitation jus t balances the damping. How-

ever, one dimensional theories of nonlinear wave coupling [Sato and

Tsuda , 1967; Tsuda and Sato, 1967; Rogister , 1972] cannot explain

either the vertical Type II radar echoes [Fan cy and Balsley, 1973;

Balsley and Farley, 1973; Fejer et al., 1976] or the density fluctuation

amplitudes of 2-5~ observed in rocket experiments [Prakash et al. 1969,

1970, 1972] for weak electrojet conditions when presumably Type I I

irregulari ties dominate.

I t was shown by Sudan et al. (1969) that a one dimensional

nonlinear wave steepening requires abnormally large fluctuating

amplitudes 30-50% and therefore the actual mechanism for such inter-

action must be two-dimensional in nature. Since

the group velocity of all the waves is the same viz. Vd/ ( l  + 
~) the

wavepackets can couple strongly to each other because they stay together

for a long time. In the frame moving with velocity Vd/ ( l  + t~ ) with

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _



- ~-.. .— -.~ - — I—— 
-
~

-7-

respect to the laboratory an unstable wave appears to be a purely

growing wave since the real part of the frequency doppler shifts to

zero . A horizontally propagating wave will have local horizontal

densi ty and potential gradients dñ/dy and d~/dy . Where the phase of

the wave is such that ~~~~~~~~~~~~~~ > 0, secondary short waveleng th

oscillation propagating in the vertical direction will be driven

unstable in exact analogy to the primary waves driven unstable by

the equilibrium gradients (dn0/ d z)  (d~0/dz) > 0. In this manner it

is possible to generate shorter wavelength secondary waves and it is

also evident that the spectrum of these secondary waves is likely to

be isotropic in the plane transverse to the static magnetic field.

This theory can account for vertically propagating irregularities

and also predicted the two-dimensional turbulent nature of the ‘1~pe 11

irregularities experimentally verified by Fan cy and Balsley, 1973;

Balsley and Fan cy, 1973 and by Fejer et al., 1976.

The frequency spectra of the 3 rn fluctuations measured by radar

backsca ttering techniques indicate that the peak of the spectra occurs

at a frequency which is given by Eq. (7). However, the frequency width

of the spectra is much larger than that given by the damping rate (8)

and indeed it is comparable to ikr • This is also indicative of the

strong interaction between waves leading to a nonlinear damping far

in excess of linear damping rate and may be explained as follows.

Suppose we launch a test wave with wave vector k into a region of  well

developed turbulence containing waves of all possible wavelengths

propagating in every direction. The test wave will immediately couple

to two other waves, k ’, k” whose wave numbers satisfy k = kt +
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beca use the phase var ia t ion of the tes t wave will  he synch ron i zed

to the vector sum of the other two waves . Because the waves are

almost dispersionless and the group velocity of all the waves is

approxi mately equa l such inte raction could occur over a long tine

and the transfer of energy froni k to k’ and k” would result in

rapid damping of the test wave.

The quantitative analysis of the nonlinear effects described

above has been undertaken by Sudan and Keskinen (1977) using a theory

of strong turbulence whose basic premise is the “direct interaction

approximation” pioneered by Kraichnan (1959) . The principal results

of this investigation are : (1) The steady state two dimensional

density fluctuation spectrum ‘k is isotropic and follows a power law

k~~ where n l ies be tween 2 and 4 , but is closer to 3.2 if one accep ts

radar data which shows that = at 3 m. The mean r.m.s. density

fluctuation predicted by this theory falls within the range of

observations . (2) The nonlinear damping rate or the frequency width

of the spectrum is given by (y~ + r~) 1”2 where ,

rk Const. x 8Vd k
2 Ik~

’2 (10)

where 8 = v
~
/c
~
(l + tj )  and the constant is of order unity . This

expression is verified against radar observations and the simulation

results presented later.

On the other hand , Rognlien and Weinstock (1973 , 1974) have

es timated the saturated amplitude of large scale gradient—drift

fluctuations using the nonlinear theory of perturbed particle orbits

--- — - - -— . . .— -~~ -- -.------~~~~~~~~~ - .--— ~~~ --~~~~~~~~ - — —  ——-—~~~~~~~~ - —~~~—-~~~—~—
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[Weinstock and Williams , 1971; Sleeper and Weinstock, 1972]. The

perturbed orbit theory is based on the supposition that an excited

spectrum of incoherent waves causes the stochas tic dif~ ion of

collisionless orbits which leads to nonlinear wave danping. Since

the ions are collisional this concept cannot apply to them while the

magnitude of this effect on electrons is insignificant because the

electron gyroradius is negligible compared to unstable wavelengths.

Furthermore , such theories cannot explain the generation of short

wavelength or vertically propagating waves since explicit mode

coupling is not taken into account.
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NUMERICAL SIMULATIONS AND RESULTS

Equations (5) and (6) were solved numerically. A descrip tion

of the code and methods of solution is given in Ferch and Sudan

(1977). With the exception of the drift velocity, Vd, identical

parame ters, typical of the daytime equatorial electrojet, were used:

B 3 x 10~~ W/ m2
, 
~~ 

= 96 sec ’, 
~e 

= 5.3 x i06 sec~~, vi = 2.5 x 1O3

sec 1, ‘~e 
= ~ x l0~ sec

’, u~ = 10~ m
2/ sec2, u~ = 5.5 x 10~ m

2/sec2.

Table 1 summarizes the models from which temporal and spatial

power spectra were computed. Each model was initialized with an

unstable horizontal wave together with a smaller ampli tude vertical

perturbation. All models could be advanced in time until a quasi-

steady state had been achieved. Model 1, the most weakly driven ,

required the most time (approximately 32 sec) to saturate. All

three models were run on a CDC 7600, with Model 1, f o r  example , taking

about 1.5 hours of computer time.

As t increased the region of nonzero 1 5n(k),t)1
2 cascaded to

larger values of (k/k0~ k2/ k0) than those originally excited (1,0)

and (0 ,1) ;  k0 = 2njL is the fundamental wavenuither and L = 128

is the system size. The time evolution of the maximum total density

f luctuation, amplitude of the initial 128 m horizontal wave, and the

maximum horizontal and vertical velocities for Models 1-3 are shown

in Figures la-ic. Density contour plots for Model 3, the most strongly

driven (Vd 
= 125 mIs), at t = 0, 2, 4, 12, 26 , 34 sec are displayed in

I
~~ Fi gures 2a-2f. Density contour development for Models 1 and 2 is

similar to Model 3. 
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The behavior of Model 3 is illustrated in 1~igure ic-if and

2a-2f. The maximum total density fluctuation and maximum hori-

zontal and vertical velocities, which peak in an earlier time

interval , t = 3-5 sec, than the other less strongly driven models,

attain values of approximately l4.8~, 425 rn/s and 300 m/s, respec-

F tively, whereupon they relax and descfib2 a quasi-steady state.

By t = 1 sec , the maximum horizontal and vertical velocities were

comparable to the original drift velocity. At t = 2 sec, small

scale turbulence is seen from the density contour plot. In Models

1 and 2, similar behavior is observed but on a longer time scale

with smaller density fluctuations and velocities. In Model 1, the

density fluctuations and horizontal and vertical velocities peak

near t = 6-8 sec reaching values of 11.8%, 250 m/s, and 200 m/ s,

respec tively.
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SPATIAL POWER SPECT RA

Let the spatial power spectra in the quasi-steady state be

defined as I(k,t) = (L/2~r)
2<I~SnQ~,t)/n0I

2> where 5n = n-n0 (z)

and L2 is the area of the mesh. In the quasi-steady state the

ensemble average is understood to be equivalent to a time average.

In order to analyze the degree of isotropy of the spectrum, we

expand in Fourier series as follows,

N

I(k t) = I(k,t) + ~ (f~(k,t) cos nO + g~(k,t) sin nO)
n=l

where the sum over n is restricted to positive integers and k = Ik i .

Box normalization and periodic boundary conditions have been employed.

The Fourier coefficients are

I(k,t) = ~~ Jdo I(k,t)

f~(k,t) = 
~ 

I(~~,t) cos nO

g~(k,t) = 
~ 

I(k,t) sin nO

From symmetry considerations (~Sn(y,z,t) real) the odd-numbered coef-

ficients vanish. The angular integrals are computed in discrete

(k
~~
k
~

) space using a block-integration nearest grid-point scheme.

The f~(k,t) and g~(k,t) were evaluated for k in the range 1 .~ k/k0 ~ 14.

This is equivalent to a wavelength regime A = 2ir/k of 9 m ,~ A .~ 128 m.

Although in all three models the cell spacing was 2 m, spectral

________________ .
~~~~~~~~
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information for A .~ 9 rn was disregarded due to insufficient spatial

resolution and aliasing limitations. Initially, a 15-term fitting

function was used, i.e., an isotropic term and equal numbers (7) of

sin nO and cos nO harmonics with n = 2, 4, ..., 14. Equal numbers

were used due to the suggested isotropy of the spatial power spectra

[McJ)nald et al., 1974, 1975; lerkic et al., 1977; Ferch and Sudan,

1977]. Figure 3 shows sample Fourier coefficients computed from

spectra averaged over 2 sec near the beginning of the quasi-steady

state of Model 2 and indicate an approximate power law in k for

1 ~ k/k0 .~~ 14. Similar results are found for Models 1 and 2.

Absolute Fourier coefficients ~~ b~ can then be defined using

the best-fit spectral indices, p,~, ci~ in the following manner :

I(~,t) = a0k~~ + 

~ 
(ank~~

n cos nO + b~k~~fl sin nO)

with the ~~ b~ found from least squares fitting. For time averaged

spectra taken during the middle and end of the quasi-steady state

of Model 2, Table 2 gives the best fit spectral indices and relative

magnitudes (a~/a0, b~/a0) of the best fit coefficients that exceeded

0.1 and indicates that the power spectra are approximately isotropic.

Similar results were obtained for the other two models. The best

fit spectral indices were computed using a least squares fitting

routine with errors equal to the standard deviations. The uncertainties

in the relative coefficients reflect the statistical error in the

mean of the time-averaged spectral estimates.
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The computed power laws of the spatial power spectra 1(k) “ k ’~,

n = 3-4, for A :9-128 m are in agreement with previous rocket data

(n = 3 + 1; X:1-l5 m, Prakash et al., 1969 , 1970), recent numerical

studies (n 3.5; A :9-75 m, McDonald et al., 1974, 1975; n = 3 + 1 ;

A:9-l28 m, Ferch and Sudan , 1977) and dimensional arguments (n ~ . 3,

Ott and Farley, 1974). In addition the isotropic nature of the

computed spatial power spectra for A:9-128 m compares favorably with

recent radar measurements of Type II irregularities at A = 3 m

[lerkic et al., 1977].

It is of interest to study in more detail the isotropic part of

the k-spectra. Figures 4a-4d illustrate the time evolution of the

angle-averaged power spectra, viz., 1(k) = (21T)~~ ~~dO I(k,O) at

t = 0, 2, 13, 25 sec for Model 2 = 100 m/sec). Initially, only

one wavenumber k = 1 is excited (k is scaled in terms of the fundamental

k0 = 2 /128 in 1
). The initial power residing in k 2 to 14 is not

physical but numerical in origin and results from discrete Fourier

transformation. In the linear stages of the simulation, the power

in the initially excited unstable mode increases. As the turbulence

develops, the power in the linearly damped portion of the spectrum

(k > kc 3) also increases. Finally, nonlinear interactions in the

fully developed turbulence has reduced the power in the initial wave-

number and brought the spectrum roughly in accordance with a power law.

In Fig. 5, for the quasi-steady states of Models 1-3, 1(k) is

plotted as a function of drift velocity Vd for several wavelengths.

These curves indicate that the spectra follow an approximate power

law in V~, i.e., 1(k) c~ ~~ Unfortunately, due to numerical instabilities

_ _ _ _ _ _ _ _ _ _ _ _  
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and computational cost, a larger range of drift velocities could not

be studied. From radar backscatter observations at 3 m, a quadratic

dependence of scattering cross section on drift velocity Vd has 
also

been inferred [Baisley, ~969; Farley and Balsley, 
1973]. 

_ _  _  _
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TEtVORAL POWER SPECTRA

The temporal power spectra I (k , w) c~ &~ (k ~
) 2 > we re compute d

(see ~ppenthx A) using the direct method [Blackman and Thkey , 1959].

Power spectral estimates from different time blocks were averaged

to reduce the variance. The sampling frequency was chosen to be

always greater than twice the frequencies in which there was measurable

power in order to minimize alias ing. In many cases the spectra were

further smoothed over adjacent channels using a Jlann window-. Final

spectra at a particle (k.1
,k1),  i.e., at a particular wavelength and

angle to the electrojet dri ft , consisted of an average over 20. 5 sec

in the quasi-steady states of the three models. Several sample

spectra were computed in order to estimate a sampling frequency which

was taken to be SO sec~~. Both 128 and 256 point trans forms were

used. By choosing fly = ky /k
0~ 

nz k
~
/k0 to lie between 0 .~< n~ .~ 14

and -14 ,
~ 
n~ .~ 14, spectra are available from considerations of

symmetry that cover the range 00 < 0 < 360° and 9 m < A < 128 m where

A = 2 -rr/ k and 0 tan
~~
(k
~
/k
~
). Figures 6a-6c give sample computed

spectra together with radar obtained spectra [Balsley and Farley,

1971] taken in the daytime equatorial electrojet for equivalent

conditions . For A = 9 rn many of the computed spectra were of poor

quality when integration times were less than 2 sec. All spectra

~~re normalized to their maximum values . The principal characteris tics

of the spectra are their mean frequencies and average widths. We have

analyzed for the three models the frequencies and widths of the computed

spectra throughout the range of A and 0. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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MiAN SPECTRUM FREQUENCIES

The spectrum frequency , w/ 2ir , is taken to be the ave rage of the

upper and lower half-power points . Extraneous peaks at zero fre-

quency were disregarded. In Figures 7a- 7c are displayed for Mode ls

1-3 (Vd = 75, 100, 125 m/s ) the computed spectrum frequencies as

a function of k at the following fixed angles to the electrojet

drift (also the principal radar angles): 90° (vertical), ~ 45° ,

~ 30°. Also included at each angle are the frequencies of modes

that propagate within 7.5° of these chosen angles. Positive angles

refer to upward moving waves , negative angles to downward moving

waves . Because some spectra were noisy all points could not be

paired at the opposite angle . The linearly damped (k > kc) and

growing (k < kc) modes are indicated along with the freque ncies

derived from the linear dispersion relation. The maximum erro r

in each spectrum frequency is estimated to be 0.2 Hz. At the angles

shown, the average spectrum frequencies computed from the quasi-

steady turbulent state at the three drift velocities over the range

of wavelengths 9-128 m are not, within error bounds , appreciably

different from the linear results except at large k (short wave-

lengths) . At these angles , aside from the vertical (90°) , the com-

puted spectrum frequencies are proportional to wavenuirber , ~Ai a k.

Figure 8 illustrates for Mxlel 2 (Vd = 100 m/s) the good agreement

between the compute d phase velocity, co/ k , in the steady turbulent

state and the predicted dependence from linear theory, viz . ,

co/ k = V
d(l + ~p)

1 coso. Similar fi ts are fo und for the other two

models .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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These results imply tha t even in the quasi-steady turbulent

state with turbulent velocity fluc tuations oV on the order of the

mean drift Vd (see Fig. la-lc), the average frequencies can be -

found with the linear dispersion relation using the drift velocity

Vd.

AVERAGE SPECTRUM WIIYI}IS

The average spectrum width, ~w/2ir, is defined as the difference

between the upper and lower half-power points . In Figures 9a-9c

are displayed, for the three drift velocities, the mean spectral

width as a function of k at the same angles. Linearly growing and

damped wavelengths are also indicated and the linear damping rates

shown . The maximum error in each computed spectrum width is

estimated to be 0.4 Hz . At the angles shown, there is a definite

trend for the average widths to increase with k, for all three

drift velocities, a feature also noted in radar backscatter obser-

vations at 3 and 9 m [Baisley and Farley , 1971] . In addition, the

widths at all angles and for all three drift velocities exceed the

linear damping ra tes. Moreover , at fixed k, the width of the spectra

of the linearly damped wavelengths increase with increasing drift

velocity, a feature not predicted by linear theory. There seems to

be no appreciable difference between the mean widths computed for the

upward moving waves as compared to those of the downward moving

waves except perhaps at large k. The exact dependence of L~w on k ,

throughout the range of wavelengths studied, is not we ll-defined, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~--~~~~~~~~~~~~~~~~~~~~ -
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although, for example, the mean widths of the vertical modes (90°)

for Model 2 fit well a power law in k, Aw ‘
~~ k~ with n 0.8. Figure

10 shows &o/w at 0 = 45° for Models 1-3. Over the range of k,

Aw/co exceeds 0.5 indicating strongly turbulent fluctuations. This

is in rough agreement with radar observations [Bals ley and Farley ,

1971]. Similar plots are found for the other two models.

To examine the dependence of angle-averaged spectral width on

wavenwther k for wavelengths not previously studied with radar , we

have plotted in Figure 11 the numerically obtained angle-averaged

frequency spread vs. k for the three drift velocities 
~d 

= 75, 100,

125 ni/sec. At all three drift velocities, the angle-averaged widths

increase approximately monotonically with k. We have fitted these

data , for each drift velocity , with a function of the form (y~ +

where is the linear growth rate and rk is the predicted linewidth

front Eq. (10) . This function gives a reasonable fit afte r adjusting

rk by a constant of order unity. In this connection it would be useful

to study the spectral characteristics of wavelengths greater than 9 m

by radar.

The numerically obtained angle-averaged spectral width as a

function of drift velocity Vd for several wavelengths is displayed

in Figure 12 • At thes eewave lengths the data shows that the angle-

averaged frequency spread is roughly proportional to with m 1.5-2.5.

From radar observations [Balsley, 1969; Farley and Faisley, 1973] it

has been inferred that 1(k) V~ giving for the angle-averaged spectral

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
J
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broadening 
~k ~~ This agrees reasonably well with the curves

shown in Figure 12. The experimentally observed linewidth Aw from

9 m Type II radar backscatter observations [Balsley and Farley ,

1971] is shown in Figure 13 as a f unction of drift  velocity Vd.

The dependence of &o with Vd appears linear as opposed to the

quadratic results indicated by theory and the present numerical

simulations. However, it mus t be noted that these results are

obtained from one zeni th angle and not angle-averaged. Furthermore ,

the effects on spectral width of the changing scattering volume is

not well-defined throughout the range of dri ft velocities shown. 

_ _  
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TEST WAVES

The niagnitudo of the power spectra of the short wavelength

i rregularities (A < 10 m) is much smaller than the fundamental

(A = 128 m) by as much as four or five orders of magnitude . In

order to study more closely the turbulent damp ing at the shorte r

wavelengths, test waves of the form A sin(kyy + k~ z - wkt) were

launched in the quasi-steady states. The decay rates, Tk
’, of the

test waves were found to be of the order of the spectral width &o

of the power spectra computed at the wavelength of the test waves .

The wavelength A and the propagation angle 0 of the test waves

were taken to be 9, 10 m and ~ 45°, respectively, with the amplitude

A fixed at 0.04. This amplitude corresponds to the approximate

quasi-steady state amplitude of the turbulent density fluctuations .

Figure 14 gives an example of the decay of a sample 10 m test wave

launched in the quasi- steady state of Model 2 . Table 3 compares the

nonlinear damping as computed from the spectral width, test wave

decay rates , and the theoretical prediction for wavelengths studied

in Models 1-3. The agreement between spectral width and tes t wave

decay rates is reasonable. Better agreement cannot be expected since

the spectra were computed by averaging many samples whereas the test

wave decay rates are found using only one sample. However , the trend

of increasing spectral width with decreasing wavelength is also noted

in the decay rates of the large amplitude short wavelength test waves.
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cONCLUSION

We have computed the temporal and spatial power spectra from

numerical simulation of Type II irregularities in the daytime

equatorial electrojet. The overall level of turbulent densi ty

fluctuation appears to increase with the electrojet drift  veloci ty ,

Vd, in the range 75-125 rn/s. Appreciable excitation of vertical

and oblique waves is seen at drif t velocities of 75 and 125 rn/s .

This supplements similar results of Ferch and Sudan (1977) at

Vd = 100 rn/s and provides further support for the two-dimensional

model of Sudan et al. (1173).

At the three drift velocities studied (75 , 100 , 125 m/s) and in

the wavelength range of approxima tely 9- 128 m the computed time-

averaged spatial power spectra 1(k) are, on the average , found to

be isotropic and follow a power law in k(I (k) k~~, n = 3.5 ~ 0.5).

This is in agreement with experimental results [Prakash et al., 1969,

1971, 1972; lerkic et al., 1977 for A = 9 m], numerical simulations

[Mcrk~nald et al., 1974, 1975; Ferch and Sudan, 1977] arid dimensional

ar~~~ents [Ott and Farley, 1974]. In addition, some evidence is

found which suggests that Tk ~~~, in agreement with Type II radar

observations [Baisley, 1969; Farley and Balsley, 1973].

The numerically compute d temporal power spectra compare favorably

with several 9 m Type II radar spectra taken in the daytime equatorial

electrojet [Baisley and Farley , 1971] . The numerical spectra are

computed with known electrojet parameters with the radar spectra 
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being integrated ove r a small region of the electrojet due to limited

resolution (1-3 kin) . In addition , only a limi ted number of inte r-

actin~ modes Can be kep t in the srmulation due to finite gri d size

and computer storage limitations and spectral integration times mus t

be minimized. These factors make direct comparison between numerical

and radar spectra difficult to assess.

In the turbulent quasi-steady states of the three models studied ,

the mean spectrum frequencies of the numerically obtained spectra

agree well , within error bounds , with linear theory , except at short

wavelengths. The average spectrum widths , on the other hand , in the

wavelength range 9-128 m are greater than the linear damping rates

and increase with decreasing wavelength. Also , at a fixed wavelength,

the average widths of the linearly damped modes increase with drift

velocity in the range 15-125 m/s , a feature not predicted by the

linear theory of the gradient- dri ft instability. No appreciable

difference is seen in the spectral widths of the upward moving waves

as compared with the downward moving waves . !~breover the width to

mean ratios of the computed spectra suggest strongly turbulent

fluctuations in agreement with radar observations [Baisley and Farley,

1971].

There remains some noise-like features in the computed spectral

characteristics of the short wavelength (A < 10 m) irregularities.

This is to be expected due to resolution limitations. In the models

studied a grid mesh of 64 x 64 points is used which allows Fourier

components of up to wavenumber 32 in each directi on. Components with

wavenimihers greater than 16, therefore, are subject to possibly serious 

- . - ~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~ —
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distortion from aliasing errors . The highest wavenunber studied in

Model 1-3 was 14 (9 .1 m). The overall trend of increasing line-

width with decreasing wavelength is noted in the decay rates of the

large amplitude short wavelength test waves. The effe cts on the

spectra at the short wavelengths due to other sources of error , e.g.,

spatial and temporal truncation errors , could not be fully investigated

due to the high computational cost of the spectral integration times.

However, in Model 3, after restarting near the quasi-steady state,

several short wavelength spectra were computed after halving the

time step thereby reducing the time truncation error. No appreciable

differences were found in spectral features.

Finally, the power law k n, n = 3-4) of the turbulence and

the scaling of the frequency broadening rk with wavenuaber k and drift

velocity Vd lend support to the strong turbulence theory of Sudan and

Keskinen (1977) which predicts rk Vd k
2 ~~~ with ‘k k ”, n 3.2.

_ _  ----- - -- -- --
~~~~
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APPENDI X A:

METhOD OF QJMPUTING TEMPORAL POWER SPECTRA

Fourier expanding ân(x ,t) ove r a square of edge L in the time

interval T

i5n(x ,t) = 6n(~,~) exp{i(k.x - ~t)} (A.l)
k,u

Sn (k,w) = (2irY 3(L2T)~~ f 
d2x dt 6n(x,t) exp{-i(k.x - wt)} (A.2)

where x = (y,z),  ~~~ (k~~
k
~
) and defining the normalized temporal

power spectrum 
~k ui

<~~n~2> = J d2k d~ (A.3)

we find for homogeneous and stationary turbulence

= lim L2T <~Sn(~,w)~ 2> (A.4)
~~ 

L,T-c~ 
(Lii ) o

where the angle brackets denote an ensemble average, viz., the average

over a large number of identical systems of which the system under

study is a member. In the quasi-steady state, the ensemble average

is equivalent to a time average over any one system of the ensemble.

This direct method of computing the temporal power spectra is more

desirable than the method of autocorrelations due to computer storage

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -— - -“ - - -~~~~~~~~~~~~~ -~~~~~~~~~~ 
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limitation and the relative speed of the fas t Fourier transfo rm (FFT) .

Both methods can be shown to be equivalent [Blackman and Tukey , 1959].

In order to compute in practice we must firs t compute

ónQ,ui) which in discrete form can be written for fixed k

6n(~~~~f) = 

~ 

6n(~~j~t)exp(-2~ij~/N} (A.5)

where N is the number of time samples, £ = 0, 1, ..., N - 1, j  = 0, 1,

..., N - 1, tif = T, T the total integration time, ~t is the sampling

period . Power spectral estimates from successive time blocks were

averaged to reduce the variance. The sampling frequency (~tY 1 was

chosen to be always greater than twice the frequencies in which

there was measurable power in order to minimize chasing. This was

accomplished by firs t computing the highest -frequencies in the

system. In our case , these were found at the shortest wavelengths

(14 ~ k/k0 ~ 10, 9 m A 12 m). In Models 1-3, the maximum

frequencies corresponding to these short wavelengths was found , by

trial and error, to be less than 10 sec~~.
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FIGURE CAPTIONS

Figure 1. Maximum total density fluctuation Sn/n, ampli tude of

ini tially growing mode A10, and maxinvm horizontal and vertical

turbulent velocities Vn and V~ as function of time in seconds.

(a) Model 1.

(b) Model 2.

(c) Model 3.

Figure 2. Contour plots of density fluctuation iSn for Model 3

(Vd = 125 msec4). Contour lines represent equal increments in

~Sn between maximum (+ signs ) and minimum (- signs). Horizontal

axis is y(direction of electron drift) and vertical axis is

z(vertical). Scale for A10 reads one half of en/n scale.

(a) t = 0, Sn/n = .04, A1 0  = 6.14, ~~~~~ = 100.

(b) t = 2, cSn/n = .06, A10 = 9.22, VH,max = 173.

Cc) t = 4, on/n = .14, A1 0  13.61, VHmax = 427.

(d) t = 12, On/n = .07, A10  5.81, V
H,max = 251.

(e) t = 26, On/n = .068, A1,0 = 4.83, VHmax = 212.

(f) t = 34, On/n = .06, A10 = 4.53, VH~~~ 
192.

Figure 3. Sample time averaged Fourier coefficients I (k) denoted by

closed circles, and f2(k) denoted by open circles, computed near

beginning of quasi-steady states of Model 2.

Figure 4. Time evolution of 1(k) vs. k for Model 2 (Vd 
= 100 msec~~).

(a) t=O se c .

(b) t = 2 s e c .

(c) t = 13 sec.

(d) ~ = 25 sec.
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Figure 5. Plot of 1(k) vs. Vd for several wave lengths A in the quas i-

steady states of Models 1-3.

Figure 6. Comparison between computed and radar-obtained power

spectra ‘k w  vs. frequency in liz. Solid curve from numerica l siinu-

lation; dotted curve from radar backscatter observations at 16.25

Miz (A = 9.2 m) [Balsley and Parley, 1971] ; ~w/2ir is the difference

of the frequencies at the upper and lower half-power points.

(a) Radar spectrum received from 60° east of vertical; simulation

spectrum taken at tan~~ (k
y

/k
z) 

= -30.2°.

(b) Radar spectrum received from 45° west of vertical; simulation

spectrum taken at tan~~ (ky/k z) = 45°

(c) Simulation spectrum taken at tan~~ (ky/k z) = 90° and

2ir/(k~ + k~)
1”2 = 16 in. Vertical 9 m spectra have not been studied

with radar due to critical frequency limitations.

Figure 7. Computed spectrum frequencies as functions of k for

Models 1-3. The spectrum frequency w/ 2 rr (Hz) is the average of the

frequencies at the upper and lower half-power points . Solid-dashed

line is frequency from linear theory at Vd = 125 msec~~; solid line

for Vd = 100 msec~~ ; dashed line for Vd = 75 msec~~. Arrow marks

critical wavenuither k~ from linear theory.

(a) 0 = tan~~ (ky/k z) = 90° ; linear theory predicts nonpropagating

vertical modes.

(b) 0 = 4 50 , ~45~•

(c) 0 = 30°, -30°.

Figure 8. Comparison of computed phase velocity , w/k , in steady state

with predicted dependence from linear theory (ca/k ~ cos 0) for Model

2 (Vd = 100 msec~~). Solid line is linear theory at Vd = 100 msec ’.

- -~~~~~~~ - -----• - -—~~~ -- - - - —~ — -- -— -  - - -- -- -~~~ 
- •••-~~~~~~ ~~~~~~~ - —

~~
— -~~

- 
~~~-



-36-

Figure 9. Computed spectrum line width as functions of k for Models

1-3. Solid line is linear damping rate. Arrow marks critical wwe-

number kc from linear theory.

(a) 0=90°.

(b) 0 = 45°, -45°.

(c) 0 = 30° , - .~0° .

Figure 10. Plot of L~w/ w for Models 1-3 at 0 = 45° .

Figure 11. Comparison between numerically obtained angle-averaged

spectral widths and predicted angle-averaged nonlinear frequency

broadening rk vs. k for Models 1-3 Dots , circles , and triangles

show &~i from simulation averaged over angles; dotted curve gives

from linear theory; solid lines show (1’~ + y~) l/2 ; at large k ,

is comparable to rk iii simulations; numerical factors are adjusted

for best fit.

Figure 12. Plot of computed angle averaged spectral linewidth Aw

vs. Vd at several different wavelengths; numerical factors are

adjusted for best fit .

Figure 13. Plot of Aw vs . electrojet dri ft veloci ty Vd from radar

observations at 45° [Bai sley and Farley, 1973] for A = 9 m.

Figure 14. Plot of decay of squared amplitude of 10 m tes t wave vs.

t ime in seconds launched in Model 2. Decay time z is taken to be

time at which amplitude falls to e~~ of initial amplitude.
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